NEXT MOBILITY

MENU

2021年9月28日【IoT】

デンソーテン、組込み機器向けエッジAI技術を開発

NEXT MOBILITY編集部

  • このエントリーをはてなブックマークに追加

 

 

デンソーテンは9月28日、ドライブレコーダーなどの組込み機器(以下「エッジ端末」)で撮影した車両や歩行者などの物体を、エッジ端末のSoC上でリアルタイムに認識する軽量・高性能なエッジAI(人工知能)技術を開発したと発表した。

 

同社によると、このエッジAI技術は、処理能力0.5TOPS程度のSoCで、高性能コンピューターに用いられるGPU向けAIに匹敵する性能を実現。自社製品への搭載に加えて、SoC上で動作するAI学習済みモデル(ソフトウェア)の外販も行われる。

 

 

エッジAI技術の適用例:ドライブレコーダーなどの車載機器から効率的にデータを収集

 

エッジAI技術の適用先の一つに、車載機によるデータ収集が挙げられる。同社は2005年にタクシー向けドライブレコーダーを発売。2015年にはクラウドセンターと連携し、走行中の膨大な記録データの中から危険と判断された画像だけをリアルタイムに確認できる「クラウド連携ドライブレコーダー」を商品化した。

 

コネクティッドカーの普及に伴うデータ活用の多様化・高度化によって、例えば、ドライブレコーダーが収集する画像データに対する需要が増え、それをクラウドセンターに送信するための通信コストや、クラウドセンターのストレージコストなどデータ収集コストの増加が見込まれる。そこで、解決策として、まず、車の中にエッジAIを搭載して撮影した画像に映り込んでいる物体を認識し、(a)例えば、看板や車の台数などの認識結果を文字データとしてクラウドセンターに送信。次に、クラウドセンターで認識結果に基づいて(b)本当に必要な画像データの送信だけを車載機器へ要求することで、データ収集に係るコストを大幅に削減し、効率の良いデータ収集を行えるようになる。今回、このような車載用途に適用可能な、軽量・高性能なエッジAI技術を開発した。

 

 

演算量削減と高度な認識性能を両立、教師データ作成やAIモデル学習に係る時間も短縮

 

– 画像認識AI技術の概要
画像認識AI技術は、ディープラーニング(深層学習)が主流になっている。ディープラーニングの画像認識ソフトウェア(以下「AIモデル」)は、ニューラルネットワークと呼ばれる人間の脳の神経を模倣した構成を多層的に重ね合わせる。多層のニューラルネットワークであるため演算量は多いが、従来の認識技術よりも高精度に認識可能。この技術では、認識したい物体を含む画像(教師データ)を大量(数万~数十万枚)に用意してAIモデルに何度も学習させ、その結果をSoCに載せられるサイズに軽量化して実装する。

 

– 課題
AIモデルの構築・更新・変更には以下の課題を克服しなければならない。
1.小規模なSoCでの処理を可能とする、少ない演算量・メモリ量と、それらによってもたらされる、他のプロセスとも共存可能な軽量化(プロセス⑤)
2.大量の教師データを作成するための工数削減(プロセス③)と、AIモデル生成における工数削減(プロセス④)

 

– デンソーテンの開発技術の特長を生かした解決策
1.超軽量エッジAI技術
・様々な大学や研究機関、企業などで開発されている高性能の画像認識AIから、車載機向けのベースとなるAIを選定。性能確保のために残すべき部分を特定し、そうでない部分を簡単な演算に置き換えることでAIモデルの演算量・メモリ量を削減(プロセス⑤)
・高性能パソコン向けのGPUなどで実行される代表的なAIである、Darknet53+Yolov3と比較して、1/60以下の演算量と1/32以下のメモリ量で同等の認識性能を実現

 

2.モデル生成効率化技術
・今回開発した当社のエッジAI技術と組み合わせることで教師データの作成にかかる手作業を一部自動化。経験豊富な人の手作業による教師データ作成と比較して時間を20%削減(プロセス③)
・同社のAI技術者が保有するノウハウをソフトウェア化することで性能の良いモデルを作るための設定値(学習用パラメータ)を特定する工程を自動化。AI技術者がいなくてもAI技術者が作成したモデルと同等性能のモデルを短期間かつ自動で生成することが可能(プロセス④)

 

 

通行量把握や防犯、監視向けなど車載以外の用途も提案

 

これら技術開発で作成したAIモデルを自社製品に適用。さらに、収集画像の個人情報保護(例:映り込んでいる人の顔をマスク)、車両や歩行者による通行量の把握、防犯カメラでの侵入検知、店舗内カメラによる来店客の移動軌跡の検出など車載以外の用途も提案していく。

CLOSE

坂上 賢治

NEXT MOBILITY&MOTOR CARS編集長。日刊自動車新聞を振り出しに自動車産業全域での取材活動を開始。同社の出版局へ移籍して以降は、コンシューマー向け媒体(発行45万部)を筆頭に、日本国内初の自動車環境ビジネス媒体・アフターマーケット事業の専門誌など多様な読者を対象とした創刊誌を手掛けた。独立後は、ビジネス戦略学やマーケティング分野で教鞭を執りつつ、自動車専門誌や一般誌の他、Web媒体などを介したジャーナリスト活動が30年半ば。2015年より自動車情報媒体のMOTOR CARS編集長、2017年より自動車ビジネス誌×WebメディアのNEXT MOBILITY 編集長。

松下次男

1975年日刊自動車新聞社入社。編集局記者として国会担当を皮切りに自動車販売・部品産業など幅広く取材。その後、長野支局長、編集局総合デスク、自動車ビジネス誌MOBI21編集長、出版局長を経て2010年論説委員。2011年から特別編集委員。自動車産業を取り巻く経済展望、環境政策、自動運転等の次世代自動車技術を取材。2016年独立し自動車産業政策を中心に取材・執筆活動中。

間宮 潔

1975年日刊自動車新聞社入社。部品産業をはじめ、自動車販売など幅広く取材。また自動車リサイクル法成立時の電炉業界から解体現場までをルポ。その後、同社の広告営業、新聞販売、印刷部門を担当、2006年に中部支社長、2009年執行役員編集局長に就き、2013年から特別編集委員として輸送分野を担当。2018年春から独立、NEXT MOBILITY誌の編集顧問。

片山 雅美

日刊自動車新聞社で取材活動のスタートを切る。同紙記者を皮切りに社長室支社統括部長を経て、全石連発行の機関紙ぜんせきの取材記者としても活躍。自動車流通から交通インフラ、エネルギー分野に至る幅広い領域で実績を残す。2017年以降は、佃モビリティ総研を拠点に蓄積した取材人脈を糧に執筆活動を展開中。

中島みなみ

(中島南事務所/東京都文京区)1963年・愛知県生まれ。新聞、週刊誌、総合月刊誌記者(月刊文藝春秋)を経て独立。規制改革や行政システムを視点とした社会問題を取材テーマとするジャーナリスト。

山田清志

経済誌「財界」で自動車、エネルギー、化学、紙パルプ産業の専任記者を皮切りに報道分野に進出。2000年からは産業界・官界・財界での豊富な人脈を基に経済ジャーナリストとして国内外の経済誌で執筆。近年はビジネス誌、オピニオン誌、経済団体誌、Web媒体等、多様な産業を股に掛けて活動中。

佃 義夫

1970年日刊自動車新聞社入社。編集局記者として自動車全分野を網羅して担当。2000年出版局長として「Mobi21」誌を創刊。取締役、常務、専務主筆・編集局長、代表取締役社長を歴任。2014年に独立し、佃モビリティ総研を開設。自動車関連著書に「トヨタの野望、日産の決断」(ダイヤモンド社)など。執筆活動に加え講演活動も。

熊澤啓三

株式会社アーサメジャープロ エグゼクティブコンサルタント。PR/危機管理コミュニケーションコンサルタント、メディアトレーナー。自動車業界他の大手企業をクライアントに持つ。日産自動車、グローバルPR会社のフライシュマン・ヒラード・ジャパン、エデルマン・ジャパンを経て、2010年にアーサメジャープロを創業。東京大学理学部卒。

福田 俊之

1952年東京生まれ。産業専門紙記者、経済誌編集長を経て、99年に独立。自動車業界を中心に取材、執筆活動中。著書に「最強トヨタの自己改革」(角川書店)、共著に「トヨタ式仕事の教科書」(プレジデント社)、「スズキパワー現場のものづくり」(講談社ピーシー)など。